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Effect of Modal Filter Errors
on Vibration Control Characteristics

Jai-Hyuk Hwang*, Jung-Soo Kim** and Joon-Soo Kim***
(Received October 24, 1997)

When designing a control system for vibration suppression of flexible structures using modal
control strategy, one must know the modal displacements and velocities of the controlled modes.
If the vibration control forces are designed based on inaccurate modal states, the closed-loop
performance of the vibration control system will be degraded depending on the extent of the
modal filter errors. In this study, the effect of modal filter errors on the vibration control
characteristics of flexible structures is analyzed for IMSC (Independent Modal Space Control).
A Lyapunov asymptotic stability condition that depends on the magnitude of the modal filter
errors is derived. The extent of the response deviation of the closed-loop system is also derived
and evaluated using operator techniques. The extent of the response deviation is found to be

proportional to the magnitude of the modal filter errors.
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1. Introduction

In order to suppress vibration of flexible struc-
tures such as space structures using modal control
method, the modal displacements and velocities
must be known. In other words, the calculation of
the feedback control forces for vibration suppres-
sion requires accurate knowledge of modal states.
Since the vibration sensors measure the actual
displacements, additional work is needed to con-
vert the sensor readings into the knowledge of
modal states. This can be done by using either
observers or modal filters. If observers are used to
estimate the modal states for the controlled modes
of the discretized model of the system, observa-
tion spillover due to sensors and control spillover
due to a finite number of actuators may cause the
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closed-loop system to become unstable. If the
modal filters based on the expansion theorem is
used, however, the ob‘ser\fation spillover can be
minimized by converting the sensor readings into
a distributed output. The output accuracy can be
further enhanced by increasing the number of
sensors employed. The moda! filter method was
originally proposed by Meirovitch and Baruh
(Meirovitch and Baruh, 1981, 1982), with later
refinements (Meirovitch and Baruh, 1985, Choe
and Baruh, 1983). However, errors can arise
when using the modal filters. The sources of error
are system parameter uncertainty, inexact system
eigenfunctions, the use of interpolation functions,
and a finite number of sensors employed. Hence,
the natural question is how the control law
designed on the basis of the information furnished
by the modal filters containing such errors will
influence the performance of the closed-loop
system. That is, how robust is the system perfor-
mance with respect to the modal filter errors ?
Although many methods have been devised to
date for vibration control of flexible structures,
been that the
computational and implementational complexity

the main drawback has
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rapidly increases as the number of the controlled
modes increases. Meirovitch and coworkers
(Meirovitch and Baruh, 1982, Merirovitch, 1980,
Meirovitch et al, 1993) have proposed an in-
dependent modal space control (IMSC) method
in which modal control forces are individually
designed for each mode. The method entails using
the modal matrix as a transformaticn matrix to
convert the coupled equations of the motion of
the system into a set of decoupled equations in
modal ccordinates. A modal control law can then
be designed for one mode at a time based on the
information furnished by the respective modal
states, and the control system design and imple-
mentation can therefore become very simple, irre-
spective of the total number of system modes to be
controlled. The modal control law thus designed
can then be converted into the actual control force
by using the reverse coordinate transformation.
The main drawback of this method is that the
number of required actuators should be equal to
the number of the controlled modes.

Although a number of studies have dealt with
robustness properties of IMSC method (Hwang
1993, 1994, Hwang et al, 1996), the effect of the
modal filter errors on the performance character-
istics of IMSC has not been reported to date. The
main purpose of the present investigation is to
undertake such an analysis. First, the effect of the
modal estimation error arising from the modal
filter errors on the stability of the closed-loop
system is investigated; the condition for
asymptotic stability in the sense of Lyapunov is
derived. Next, an upper bound on the deviation of
the vibration control law from the nominal design
value due to the modal filter errors is derived
using operator techniques. The bound on the
response deviation of the closed-loop system is
found to be directly proportional to the magni-
tude of the modal filter errors. The authors
believe that the present study is the first reported
to date that directly deals with the effect of the
modal filter errors on the performance character-
istics of the IMSC method.

2. System Design with Modal Filters

Modal filters for estimating modal states of
controlled modes can be expressed in the form of

qe (1) =Dy (f) (1
Ge()=Dy (1) 2)

where §.(¢) and (;c(l‘) are the estimated modal
displacement and velocity vectors of order #,
respectively, and y(¢) and y (¢) are the displace-
ment and velocity sensor output vectors of order
K., respectively. For computational simplicity and
yet without sacrificing generality, the modal filter
matrix /) for one-dimensional continuous sys-
tems can be written as (Meirovitch and Baruh,
1982)

Dp=IP+IP =12, K
ye=1.2, . n (3

for which

L= (19121 =h [ "M (hi—he)
B (hii = h&) L(€)

dEl)= 19 =0
0<e<l.

In the above equations, ¢, denotes the p-ih
eigenvector, M the mass operator, / the length of
an individual finite element, K the number ol
sensors, # the number of controlled modes, and /.
(&) the interpolation function vector. Although
the slope y'(¢) and angular velocity y’(¢) could
also be included in the sensor output for better
accuracy, it is not considered here. If enough
sensors are used, the desired accuracy can still be
obtained from the displacement and velocity sen-
sor outputs only.

From the expansion theorem, the following
definition for the displacement sensor output
vector can be given(Meirovitch, 1980, Inman,
1989)

v (1) =10 (o t)::ﬁlgbr-(xj) a(£),

j=12, - K (4)
Recasting Eq. (4) in matrix form,
y(1)=Cqlt) (5)

where
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Cir==chr(xs), j=1. 2, s K. r=1,2, -

Classifying the system modes into the controlled
modes ¢, (#) and the residual modes g, (¢), the
displacement sensor output vector can be cast in
the form

() =Coge () + Crgu () (6)

where

ra=l, 2 m

C‘R:[Clcir:‘v Ch’j'r:¢r(xj)ﬁ ]."‘:lq 2’ - K

r=ptl g2, -
and the velocity sensor output vector can be
written as

V{E)y=Ccge(t) +Crgr(l) (7
Substituting Eq. (6) and (7) into Eq. (1) and
{2). respeciively, we have

Ge () =DCeqe (1) +DCrar () (8)

G () =DCeqc (1) +DCrr(t) )
If the matrix D is exact, the modal filter should
provide accurate estimates of the modal states,
and, §.(4), (;C(z) will be identical to ¢.(¢) and,
aq.(#), respectively. The required condition criter-
ia can be expressed as

DCc=1c. DCr=0
where [ is the unit matrix of order n. If D is not
exact, however, the modal filter output will con-
tain errors, and ¢ (#) and q%(t) will deviate
from g¢({) and g (/). respectively. [f the esti-
mates containing errors are used in feedback, the
closed-loop system performance will be
degraded.

Let us now consider the following modal equa-

tions for the controlled modes

Gr(t) +Fwlqr (8)=f (), »=1,2, -, n

where ¢, (¢) and £, (/) denote y-th modal dis-
placement and modal force, respectively. The
modal force is given by
S0 = [ of (o D o1, 2, 00
(1
where f(x. ¢) is the actual distributed force.
Applying vector notation, Eq. (10) can be expres-

sed as
Iege (i) + Aege (8) =f () (12)

for which

Ae=diag [0’ w wa’],
SO =AW LD (D]
Let us now apply the IMSC method to design
a control law for independent control of each
mode. Since the »-th modal force £, (¢) depends
only on y-th modal states ¢, (/) and g,(¢), the
following equation can be used

_fr(t):"k/>741r(t) _;BVrdr(t)v r=1, 2, R

(13)

Applying optimal control theory furnishes us

with the following expressions for the feedback
gains kp, and ky,:

bvr= {20, (— w-+J 3+ R + Ry '}V2
r=1,2, - n,
where R, denotes a weighting factor for the
control force. Since @, >0, the conditions kp, >0
and ky, >0 are also satisfied. Rewriting Eq. (13)
in vector form,

f()=—=Kpge(8) —Kvge(t) (14)

for which control gain matrices Kp and K, are
positive definite and given by

Ke=diag{keikpy - kpn)
Ky= Cﬁdg]:k"lkV?'”/eV”] .

However, as the modal displacements ¢.(¢) and
modal velocities §.(#) cannot be directly mea-
sured, we obtain the estimated modal displace-
ments g.(¢) and modal velocities g;(t) by using
the modal filters. Thus, the control force of Eq.
(14) is replaced by

F() == Kpfe(t) — Kv e (1) (15)

We now consider the modal filter errors in
some detail. The errors can be generated from
several sources: The tirst is the errors in eigenfun-
ctions ¢,. The second is dividing the continuous
region into a finite number of elements. The third
is the use of the interpolation function. The fourth
is errors in system parameiers. All possible errors
are to be included, and the modal filter equation
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that includes errors can be written as

Gc(t) = (D+4D) y(t) (16)

§()=(D+4D) y (t) (17)
where D represents the exact modal filter matrix,
and 4D denotes a matrix containing the modal
filter errors. Substituting Eq. (6) and (7) into Eq.
(18) and (17) respectively, we obtain the follow-
ing equations

Ge () =Dy (t) + ADCcqc () +ADCrqr (1)
{18)
Ge) =Dy () +ADCcdc () +ADCrdr (1)
(19)
Since D denotes the exact modal filter matrix, we
have Dy (#) =¢c (¢) and Dy (¢) = g (¢). Hence,
Eqgs. (18) and (19) can be rewritten

Z]\,?(t) =(Ic+ADCe) qc (t) + ADCrqr () (20)
G () =Uc+ADCc) Gc(t) +ADCrar (t) (21)

For the case of no modal filter errors, the closed-
loop equations for the controlled modes can be
written as

TeGe () +Kvge(t) + [ Ac+ Kplge (£) =0(22)

When the modal filter errors are included, how-
ever, combining Eqs. (15), (20), and (21) yields

the following expression:

Fty=—Kp(Ic +4DCc¢) qc (1)
—Kv(Ic+4DCc) G (t) —KedDCr r (t)
—KvADCrGr (£) (23)

Substituting Eq. (23) into Eq. (12) and rear-

ranging, the closed-looping equations become

Ieg ()Y +Kv (U +ADCe) G (1)

Vibration Control Charactevistics 839
+{Ac+Kp(Ic+4DCe) 1 qe (1)
=—KvdDCrr (t) — KpdDCrqr () (24)

When modal filter errors are present, the terms in
the matrix and the residual modes on the right
-hand side of the above equation can serve as a
source of continued excitation. Furthermore, Eq.
(24) becomes coupled due to the nondiagonality
of the ADC. matrix, and the modes c¢an no longer
be considered independent. Also, the introduction
of observation spitlover, in which the residual
modes contaminate the measurements of the
controlled modes, can significantly influence the
system performance. For a complete analysis of
the stability and performance of the closed-loop
system, the equations governing the residual
modes need to be considered in conjunction with
those for the controlled modes, further com-
plicating the analysis. Since the primary focus of
the present study is ta determine the effect of the
modal filter errors on system performance, the
observation spillover can be assumed to be
eliminated for the present. Since the residual
modes are generally composed of high-frequency
signals, the observation spillover can usually be
eliminated by passing the sensor output through a
low-pass filter. Hence, the resulting closed-loop
system equations can be simpled to the following
form

[c('['c(l‘) + Ky (I +4DCe) dc(t)

+[Ac+KpIc+ADCe) Tqc (1) =0 (25)

The corresponding block diagram is given tn
Fig. 1.

Residual System

Control Spillover _,,i(R_,, [/ RSZ + AR]-'

Controller

Controlled System

Tr

Modal Filter with Error

—_—
D+AD

[ICSZ"'A(?] { qc

+
(«‘

. + y
C (_

I— —

Fig. 1

»

low-pass filter

Block diagram of closed-loop system with modal filter.
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3. Stability Analysis of the
Closed-loop System

The stability of the closed-loop system is now
constdered. The asymptotic stability criteria for
systems containing no modal filter errors are
given by

Kv >0, Ac+ Kp >0.

Since Kp. K,. /I mentioned in the previous
section are each positive definite, the above criter-
ia are satisfied. In other words, in the absence of
the modal filter errors, the system is always
asymptotically stable. When modal filter errors
are present, however, the asymptotic stability
criteria cannot readily be obtained. The reason is
that the corresponding closed-loop system equa-
tions have asymmetric coefficient matrices. To
obtain the asymptotic stability criteria, Eq. (25)
is first cast in the form

Iege (8 +AGelt) + Byc (1) =0 (26)

where

A:KV([C +ADCC>*
B:AL'+K1’ ([(+ADCC)

As mentioned above, the coefficient matrices A
and B are asymmetric due to the presence of
modal filter errors. We now define the following
Lyapunov function for Eq. (26):

V(D =¢l[B+B"]qc+[¢fA™ + 41} -
[AQC"‘— C](]+CZCT(1< (27)
Since the second and third terms of the above
equations are always positive definite, 17(¢) is
assured to be positive definite if the first terms are
positive definite. Expressing the condition in
equation form, we get

B+B">0 (28)

with
respect to time and substituting Eq. (26) into ¥

Differentiating the Lyapunov function

(#), we obtain the following result:
V(ty=~qllA'B+BAlqc—¢f(B"~Blgc
—¢iB—B"lqc— qllA+A] .

Rewriting in matrix form, we obtain

Vity=—2"Qz (29)

where

@ Q7 Tac
o5 o} ==
QZ QS qc
h=QI=A"B+ B'A,
=—QI=B—B" (30)
Q=Qi=A+AT
If Q in Eq. (29) is positive definite, then 7 (¢) is
negative definite and the system is asymptotically
stable. In order to obtain a simpler formulation of
the condition for positive definiteness of ¢, we
introduce the following transformation:

z=Ty (31
where
[ YAt r
<[y "4 Tl
0 ! Ve
Equation (29) can then be cast in the form
V() =—y"T'QTy
== — Y[ Qs — Q@ QF | e
(32)
A simple inspection of the above equation reveals
that if @, and Q;— @Q.Q7'QF are both positive
definite, then V (¢) is negative definite. The con-

ditions for V (f) to be a Lyapunov function can
be summarized as given below:

B+B">0 (33a)
>0 (33b)
Qs— QQ'Q >0 (33¢)

If the above conditions are satisfied, the system
will be asymptotically stable even in the presence
of modal filter errors. In summary, it can be seen
that the coefficient matrices A and B are asym-
metric due to the modal filter errors 4DC,, and
condition (33) may be violated, for which the
system can become unstable.

4. Effect of Modal Filter Errors on
Vibration Response Characteristics

The effect of modal filter errors on the system
response is considered in this section. Let ¢,(f)
be the error between the displacement vectors of
the controlled mode with the exact modal filters
and the modal filters containing errors:
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ec(ty=le(t)e(t)-ea(t)]"

Subtracting Eq. (25) from Eq. (22), the govern-
ing equation for ¢.(¢#) can be written as

leéc(t) v Rvéc(t) + (Ac+Kp)ec(t)
:KVADCC{}C (f) +Kpﬂ[)€c(]c (f) (34)

The above equation can be used to predict the
response error g.(#) that results from designing
vibration controllers without regard to the modal
filter errors. It can be seen that the forcing term
for ¢.(¢) is furnished by 4D. In the absence of
modal filter errors, we have 4D =0, and conse-
quently, e.(¢) =0, { =0.

To obtain an upper bound on ¢.(f), we define
the following [ .-norm:

llh(t)llzlrgzjd;; sup | 2 ()] (35)

where /() denotes an arbitrary function of order
e h(8) =R (t) ha(£) - hn (£) )7 Setting the ini-
tial conditions, ¢ (#)=¢ (¢) =0, we apply the
Laplace transform to Eq. (34) to obtain

ec (.‘s‘) - [[c'Sz+KvS+/Ic +KP}VI(KVS+KP) M

ADCedc (s) (36)

where ¢.(s) and F.(s) denote the Laplace
transforms of ¢.(¢) and ¢.(¢). respectively. We

can recast the above equation in the form

c(s)=H{(s) Gcls) (37)

in which each element of the # X » matrix H (s)
is given by

kn%‘(‘/”p .
i LA i, I ]:L 2, e

HialS) =T hs T ¥

and ¢,; denotes 7-th element of 4DC,.. Applying
the inverse Laplace transform to Eq, (36), we
obtain the following expression involving the
convolution integral

t
ee (D =[H*qc] ()= [ H(t=)ge(0)de
(38)
where (£} =L"'[H(s)]. To obtain a simple
expression for Eqg.(38) we define the following
linear operator

H(qe) =[H*qc] (1) (39)
From Eqs. (38) and (39), an upper bound on ¢,

6. el

lecl=18 (g | <I A1l gel (40)

where |H| is the [.-induced norm of linear
operator . [nvoking an identity given by Desoer
and Vidyasaga (Desoer and Vidyasaga, 1975), we
obtain for || /7],

Ilﬁﬂ:gg a%mlh,-(r)ldz (41)

in which g, 7=1. 2, ---, n denote the ;-th row

sum of the absolute value of matrix, 4DC.. 1. e.,

s 1$ given by
. /C_v:_\\‘j'_lffﬁ _____ )
hilt) =L ( si4 kvis + @+ kps
_ /Za \/ [~ Zlar_gr“f +(UI€XP(’Ci(Z)it)Sin
(O 1—CEi+ 0 (42)
where

@,:/d‘fik_pl,
g}_}__,, B (< D),

51(01 )
a:= !u’m/:luvn =1, 2,
Substituting Eq. (42) in Eq.(41) and integrating,

we obtain
kei o kyi yo [ EXP(XGoit Xai)
L= B [ SRS
(43)
where
Xi=W& 2a&o @b =120
1T2¢?
Xeo= I%%ztdn-l(i{l[v_‘ [£i~, [=002
Xu=- 28 =120

/1—-&

Rearranging Eg. (41), we obtain

s F}M2’+X3’)
HH”—{?:,;, @ |:k])'+ fevi, I —exp (X.) }

(44)
Incorporating the above results allows us to re-
write Eq. (40) in the form

(o,
H(}LH—I'ndX sup | e (t) ] ([mdx—ff
sisn (g

exp( X+ A’Xiz)\jl
(k[)z'+kV{XIZ 1 <exp{Xa) / H(]CH (45)
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The above inequality can be cast in the form of
lecd <m|gel where m takes the place of ||ﬁ|\
(Stakhold, 1979). | /7] is dependent on ¢, and the
natural frequency ¢, Thus, if the modal filter
A

will also be small. Equation (45) also reveals that

errors are small, i. e, g, <1, =1, 2, ---, 7,

a linear relationship between |¢| and the magni-
tude of the modal filter error exists, while the
proportionality constant is determined by the type
of control method. In summary, the presence of
modal filter errors implies an error in the vibra-
tion control response, with its magnitude bound
by 1|]§(|H|QCH Therefore, ¢.(#) always lies within a
band defined by =+ &]gel-

5. Examples

To demonstrate the applicability of the results
of the previous sections, a Bernoutli-Euler beam
clamped at one end is considered. The governing
equation is given by

EI0"w(x, 1)/ ox* 1+ M[FPw (x, t)/ 0t ] =F(x, 1).

The mass per unit length }f =1, dynamic stiffness
EI=10, and length /=10. The boundary condi-
tions are

Bi(0) =1, B:(0) :a’/dx,
Bi(l)=d?/dx? B:(l) =d?% dx®

Solving for the corresponding eigenvalue prob-
lem, the eigenvalues can be obtained from the
following transcendental equation

cos(fB-/)cosh(B3,{) =—1.

Solving the above equation.

B =[1.8751, 46941, 7.8548, 10.9955, 14.1372,
17.2788, ---].
Hence, the eigenvalues and eigenvectors are given
by

Ar=ai=BiEI/M, »=1,2, -,

ér=a-{[sin(f;[) —sinh (8,0) ] [sin(Bx) —sin

h(Bmx) ]+ [cos (8:1) +cosh(B.{) ] [cos
(Bx) —cosh(Bx) ]},

where ¢, is a constant vector for normalizing the
eigenfunctions and given by

ar=10.1041, 0.005788, 0.0002453, 0.0000106, 0.

0000004585, 0.00000001981, ---].

The number of controlled modes and actuators
are each selected to be six, i. e. =6. The sensor
positions are given by

xj:?éi— G—-1), j=1,2, - K,

where x; denotes the j-th sensor position and K
the number of sensors. The interpolation function
is given by

Ll(é)‘—'év Lz(é):]—f-

By applying the IMSC method, the optimal feed-
back gain matrices can be computed as follows:

K»=diag[0.1454, 0.6130, 0.8948, 0.9680,
0.9878. 0.9945].

Ky=diag[1.5135, 1.7961, 1.9467, 1.9839,
1.9939, 1.9972].

The weighting factor R, used in the computation
of the feedback gain matrix has been set at 0.5.
If we assume that the exact system parameters
and eigenfunctions are known, then the remaining
sources of the modal filter errors are the finite
number of sensors and the interpolation func-
tions. Regardless of the sources, the modal filter
errors are taken up by AD. Therefore, we will
confine ourselves to those errors arising from the
finite number of sensors only. This allows for
simpler computation and yet entails no loss of
generality. For theses different values of K, the
corresponding 4D(C. can be computed as given

below:
For K=12: ADCc=
[0.0006 —0.0081 0.0819 —0.0258  0.0359 —0.0435]

0.0013 —0.0091 —0.0062 0.0210 —0.0233  0.0375
0.0011  0.0022 —0.0309 —0.0057  0.0253 —0.0218
0.0008 0.0038 0.0030 —0.0652 —0.0055 0.0299
0.0006 0.0026 0.0078 0.0033 —0.1103 —0.0053
10.0005 0.0028 0.0045 0.0121 0.0036 —0.164] |
For K=7.4DC¢=
[0.0020 —0.0272  0.0637 —0.0872  0.1229 —0.1516]
0.0043 —0.0297 —0.0211  0.0724 —0.0812 0.1390
0.0036  0.0075 —0.0972 —0.0199  0.0947 —0.0803

0.0025 0.0132 0.0102 —0.1929 —0.0198 0.1414
0.0022  0.0090 0.0292 0.0120 —0.2897 —0.0205
0.0018 0.0103 00166 0.0573 0.0137 —0.2565 |
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For K=2: ADC.=

[0.1376 —1.1376  1.1376 —1.1376
0.1815 —1.1815 0.1815 —0.1815
0.0648 —0.0648 —0.9352 —0.0648 0.0648 —0.0648
0.0331 —0.0331 0.0331 ~1.0331 0.0331 —-0.0331
0.0200 —0.0200  0.0200 —0.0200 —0.9800 —0.0200
100134 00134 0.0134 —0.0134 0.0134 —1.0134]

1.1376 —1.1376
0.1815 —0.1815

The above matrices reveal that as K increases,
the modal filter errors diminish. Applying Eg.
(33) 10 determine stability for the above cases, the
following results can be obtained:

For [(:‘Iz Bka/\O, (\)1 >O Qa "Q2Q11(927>0,

For K=7 B+ R >0, Ql >0, QB *Q Q{VJQZT>O
For K:2 B+ Bl >’0, (J] <L 0, Q3 QzQx (\)T/O
For cases K=12 and K=7, Eq. (33) for
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asymptotic stability is satisfied. However, for K=
2, the inequalities Q<0 and Q,— (LRI (" <0
imply that condition (33) cannot be satisfied, and
the system is unstable. The system eigenvalues for
the cases of the exact modal filter and the modal
filter containing ercors are shown in Table I.
The tabulated values reveal that since for a
filter
the eigenvalue deviations are

sufficient number of sensors the modal
errors are small,
When the number of sensors is

the modal

small as well.

msufficient, however, filter errors
increase, and the complex eigenvalues have posi-
tive real part, 1. e., the system becomes unstable.
To summarize, increasing the modal filter errors
can degrade the stability of the vibration control

system, as attested to in Table 1.

Table 1 Closed-loops system eigenvalues for exact modal filter and modal filters containing errors.

Mode No. Exact K=12 K=17 K=2
| —0.0727 +1.23311i —0.0727+1.23351 —0.0727 + 1.23451 —0.04804-0.84001
2 ~0.3065 +1.4791i —0.3037-+1.47411 —0.2974+ 1.46271 0.0350+1.06361
3 —(1.4474 + 2.35651 —0.4336+2.34631 —0.4038 4 2.32401 -0.0450 4 1.99861
4 —0.48404-4.04561 —0.4524+4.0332i -0.3905 + 4.00831 0.0182+3.8142i
5 —0.4939+6.45711 -0.4394+6.44401 -0.3509+ 6.4214 -0.0103+6.3232i
6 —0.4972-+9.5334 —0.41574-9.52011 -0.3698 +9.511% 0.0068 +9.4398i
59 59,
0: / \\. ™ - HJ\S,E_T?PE_" o] 4 .\\ _/"/ ™ -\ . S 15{.[{1\03_&‘"“
INg ~ — 5 S ~— e
S T T ™ T T 1 T T T T 1
0 5 10 15 20 0 5 10 15 20
054 - 0ns .
VS N ____2nd mode 0.01 N - 2nd mode
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Fig. 2 System Modal Responses for 12 sensors.

Fig. 3 System Modal Control Forces for 12 sensors.
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For the above cases, the time-domain response
of the system was been obtained through com-
puter simulation under identical initial condi-
tions. The results for cases K=12 and K =2 are
shown in Figs. 2-7. The modal displacement
responses of the system for =12 are shown in
Fig. 2, while the corresponding modal control
forces are shown in Fig. 3. The resulting time
-domain beam displacement is shown in Fig. 4.
For K =2, the modal displacements are shown in
Fig. 5, the modal control forces are shown in Fig.
6, and the time-domain beam displacement is
shown in Fig. 7.Figures. 5-7 illustrate that when

large modal filter errors are present, the time

E)

cement

dspia

1(3ec) 00 .

20 1st mode — N\
-~ /
4] B -
-20 3 S~ N N
0 s 10 15 20
1§§3 f‘ njaie T~ /.-'-\\
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t{sec)
Fig. 5 System Modal Responses for 2 sensors.

-domain beam displacement response will
diverge. In the presence of modal filter errors, a
set of originally decoupled equations obtained by
applying the IMSC method becomes a set of
coupled equations, and the previously stable
modes may become unstable.

We now obtain an upper bound on the vibra-
tion control response error. From the previous

section
lecl<l Al gcl-

Applying Eq. (44),
listed in Table 2. The vibration control response

||| can be computed as

error will always be bound by | 7] .|, and e.(¢)

50
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U%Kv/’“\ e \/
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Fig. 6 System Modal Control Forces for 2 sensors.
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Fig. 7 Beam Displacement Response for 2 sensors.
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Table 2 Upper bounds on | Al for different num-

bers of sensors.

KK 12 7

1] 0.1718 0.4322

will always lie within a band defined by
| H|llgcll- As the number of sensors decreases. i.
e., as the modal filter errors increase, the vibration

response error increases in proportion.
6. Conclusions

In the present study. the effect of modal filter
errors on the stability and response properties of
the vibration control system designed in indepen-
dent modal space has been analyzed. The modal
filter errors arise from the errors in the system
parameters, the eigenfunctions and the interpola-
tion functions, as well as from the finite number
of sensors employed. Since the computation and
subsequent application of the vibration control
forces will be based on erroneous information
furnished by the modal filters containing the
errors, a criricial issue is whether the vibration
control response of the system will be robust with
respect to these errors. It is this issue which the
present investigation has attempted to address.
The principal results can be summarized as fol-
lows:

(1) In the presence of modal state estimation
errors due to modal filter errors, a Lyapunov
asymptotic stability condition (33) for closed
~loop vibration control system is derived.

(2) As the magnitude of the modal filter errors
increases, the stability characteristics of the closed
~loop vibration control system becomes degraded.

(3) For a given modal filter error matrix A7),
an upper bound (45) on the vibration response is
derived using the [ .-norm.

(4) The upper bound (45) is directly propor-
tional to 4], and the proportionality constant is
determined by the type of control method applied.
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